Tuesday, 18 July 2017

Analyse Of Autoregressive Moving Average Modelle Schätzung Und Vorhersage


Anmerkungen zur Schätzung und Vorhersage für autoregressive und bewegte durchschnittliche nongaussische Sequenzen Die endgültigen Bruttopreise können je nach örtlicher Mehrwertsteuer variieren. Autoregressive und gleitende Durchschnittsmodelle wurden für eine lange Zeitspanne, insbesondere im Gaußschen Fall, in Bezug auf die Probleme der Vorhersage und die der Schätzung der Koeffizienten der Modelle untersucht. Erst in den letzten Jahren wurde dem Fall von nicht-englischen Modellen besondere Aufmerksamkeit geschenkt, wo erkannt wurde, dass die entsprechenden Probleme eine kompliziertere, aber reichere Struktur haben können. Ein diskretes zeitautoregressives gleitendes Durchschnittsmodell ist eine Lösung x t des Gleichungssystems, wobei die Folge t eine Folge von unabhängigen, identisch verteilten Zufallsvariablen mit E t 0, E t 2 2 gt 0 (2 lt) ist. Die Koeffizienten a j B k sind real und es ist üblich, eine 0 b 0 zu setzen. 1. Es gibt eine stationäre Lösung für das System genau dann, wenn das Polynom keine Nullen von Absolutwert eins hat und diese Lösung eindeutig bestimmt ist. Das Schätzproblem besteht darin, die Koeffizienten a j zu schätzen. B k gegeben die Reihenfolge der Beobachtungen x 1 ,, x n. Die stationäre Lösung xt ist kausal, wenn das Polynom a (z) alle seine Nullen von absoluter Wert größer als eins hat, in dem Sinne, dass es eine einseitige Darstellung von xt in Bezug auf die Gegenwart und Vergangenheit der Sequenz mit der Koeffizienten j absteigend auf Null exponentiell schnell als j. Diese Forschung wurde zum Teil von Office of Naval Research Grant N00014-90-J1372 unterstützt. Einführung in ARIMA: Nichtseasonale Modelle ARIMA (p, d, q) Prognose Gleichung: ARIMA Modelle sind in der Theorie die allgemeinste Klasse von Modellen für die Prognose Eine Zeitreihe, die durch Differenzierung (falls nötig), vielleicht in Verbindung mit nichtlinearen Transformationen, wie zB Protokollierung oder Entleerung (falls erforderlich), hergestellt werden kann. Eine zufällige Variable, die eine Zeitreihe ist, ist stationär, wenn ihre statistischen Eigenschaften alle über die Zeit konstant sind. Eine stationäre Serie hat keinen Trend, ihre Variationen um ihre Mittel haben eine konstante Amplitude, und es wackelt in einer konsistenten Weise. D. h. seine kurzzeitigen zufälligen Zeitmuster sehen immer in einem statistischen Sinn gleich aus. Die letztere Bedingung bedeutet, daß ihre Autokorrelationen (Korrelationen mit ihren eigenen vorherigen Abweichungen vom Mittelwert) über die Zeit konstant bleiben oder äquivalent, daß sein Leistungsspektrum über die Zeit konstant bleibt. Eine zufällige Variable dieses Formulars kann (wie üblich) als eine Kombination von Signal und Rauschen betrachtet werden, und das Signal (wenn man offensichtlich ist) könnte ein Muster der schnellen oder langsamen mittleren Reversion oder sinusförmigen Oszillation oder eines schnellen Wechsels im Zeichen sein , Und es könnte auch eine saisonale Komponente haben. Ein ARIMA-Modell kann als 8220filter8221 betrachtet werden, das versucht, das Signal vom Rauschen zu trennen, und das Signal wird dann in die Zukunft extrapoliert, um Prognosen zu erhalten. Die ARIMA-Prognosegleichung für eine stationäre Zeitreihe ist eine lineare (d. h. regressionstypische) Gleichung, bei der die Prädiktoren aus Verzögerungen der abhängigen Variablen und Verzögerungen der Prognosefehler bestehen. Das heißt: vorhergesagter Wert von Y eine Konstante undeiner gewichteten Summe von einem oder mehreren neueren Werten von Y und einer gewichteten Summe von einem oder mehreren neueren Werten der Fehler. Wenn die Prädiktoren nur aus verzögerten Werten von Y bestehen, ist es ein reines autoregressives Modell (8220 selbst-regressed8221), das nur ein Spezialfall eines Regressionsmodells ist und mit Standardregressionssoftware ausgestattet werden kann. Zum Beispiel ist ein autoregressives (8220AR (1) 8221) Modell erster Ordnung für Y ein einfaches Regressionsmodell, bei dem die unabhängige Variable nur Y um eine Periode (LAG (Y, 1) in Statgraphics oder YLAG1 in RegressIt hinterlässt). Wenn einige der Prädiktoren die Fehler der Fehler sind, ist es ein ARIMA-Modell, es ist kein lineares Regressionsmodell, denn es gibt keine Möglichkeit, 828last period8217s error8221 als unabhängige Variable anzugeben: Die Fehler müssen auf einer Periodenperiode berechnet werden Wenn das Modell an die Daten angepasst ist. Aus technischer Sicht ist das Problem bei der Verwendung von verzögerten Fehlern als Prädiktoren, dass die Vorhersagen des Modells8217 nicht lineare Funktionen der Koeffizienten sind. Obwohl sie lineare Funktionen der vergangenen Daten sind. So müssen Koeffizienten in ARIMA-Modellen, die verzögerte Fehler enthalten, durch nichtlineare Optimierungsmethoden (8220hill-climbing8221) geschätzt werden, anstatt nur ein Gleichungssystem zu lösen. Das Akronym ARIMA steht für Auto-Regressive Integrated Moving Average. Die Verzögerungen der stationärisierten Serien in der Prognosegleichung werden als quartalspezifische Begriffe bezeichnet, die Verzögerungen der Prognosefehler werden als quadratische Begrenzungsterme bezeichnet, und eine Zeitreihe, die differenziert werden muss, um stationär zu sein, wird als eine quotintegrierte Quotversion einer stationären Serie bezeichnet. Random-Walk - und Random-Trend-Modelle, autoregressive Modelle und exponentielle Glättungsmodelle sind alle Sonderfälle von ARIMA-Modellen. Ein Nicht-Seasonal-ARIMA-Modell wird als ein Quoten-Modell von quaremA (p, d, q) klassifiziert, wobei p die Anzahl der autoregressiven Terme ist, d die Anzahl der für die Stationarität benötigten Nichtseasondifferenzen und q die Anzahl der verzögerten Prognosefehler in Die Vorhersagegleichung. Die Prognosegleichung wird wie folgt aufgebaut. Zuerst bezeichne y die d-te Differenz von Y. Das bedeutet: Beachten Sie, dass die zweite Differenz von Y (der Fall d2) nicht der Unterschied von 2 Perioden ist. Vielmehr ist es der erste Unterschied zwischen dem ersten Unterschied. Welches das diskrete Analog einer zweiten Ableitung ist, d. h. die lokale Beschleunigung der Reihe und nicht deren lokaler Trend. In Bezug auf y. Die allgemeine Prognosegleichung lautet: Hier werden die gleitenden Durchschnittsparameter (9528217s) so definiert, dass ihre Zeichen in der Gleichung nach der von Box und Jenkins eingeführten Konventionen negativ sind. Einige Autoren und Software (einschließlich der R-Programmiersprache) definieren sie so, dass sie stattdessen Pluszeichen haben. Wenn tatsächliche Zahlen in die Gleichung gesteckt sind, gibt es keine Mehrdeutigkeit, aber it8217s wichtig zu wissen, welche Konvention Ihre Software verwendet, wenn Sie die Ausgabe lesen. Oft werden die Parameter dort mit AR (1), AR (2), 8230 und MA (1), MA (2), 8230 usw. bezeichnet. Um das entsprechende ARIMA-Modell für Y zu identifizieren, beginnen Sie mit der Bestimmung der Reihenfolge der Differenzierung (D) die Serie zu stationieren und die Brutto-Merkmale der Saisonalität zu entfernen, vielleicht in Verbindung mit einer abweichungsstabilisierenden Transformation wie Protokollierung oder Entleerung. Wenn Sie an dieser Stelle anhalten und vorhersagen, dass die differenzierte Serie konstant ist, haben Sie nur einen zufälligen Spaziergang oder ein zufälliges Trendmodell ausgestattet. Allerdings können die stationärisierten Serien immer noch autokorrelierte Fehler aufweisen, was darauf hindeutet, dass in der Prognosegleichung auch eine Anzahl von AR-Terme (p 8805 1) und einigen einigen MA-Terme (q 8805 1) benötigt werden. Der Prozess der Bestimmung der Werte von p, d und q, die am besten für eine gegebene Zeitreihe sind, wird in späteren Abschnitten der Noten (deren Links oben auf dieser Seite), aber eine Vorschau auf einige der Typen diskutiert werden Von nicht-seasonalen ARIMA-Modellen, die häufig angetroffen werden, ist unten angegeben. ARIMA (1,0,0) Autoregressives Modell erster Ordnung: Wenn die Serie stationär und autokorreliert ist, kann man sie vielleicht als Vielfaches ihres eigenen vorherigen Wertes und einer Konstante voraussagen. Die prognostizierte Gleichung in diesem Fall ist 8230which ist Y regressed auf sich selbst verzögerte um einen Zeitraum. Dies ist ein 8220ARIMA (1,0,0) constant8221 Modell. Wenn der Mittelwert von Y Null ist, dann wäre der konstante Term nicht enthalten. Wenn der Steigungskoeffizient 981 & sub1; positiv und kleiner als 1 in der Grße ist (er muß kleiner als 1 in der Grße sein, wenn Y stationär ist), beschreibt das Modell das Mittelwiederkehrungsverhalten, bei dem der nächste Periode8217s-Wert 981 mal als vorher vorausgesagt werden sollte Weit weg von dem Mittelwert als dieser Zeitraum8217s Wert. Wenn 981 & sub1; negativ ist, prognostiziert es ein Mittelrückkehrverhalten mit einem Wechsel von Zeichen, d. h. es sagt auch, daß Y unterhalb der mittleren nächsten Periode liegt, wenn es über dem Mittelwert dieser Periode liegt. In einem autoregressiven Modell zweiter Ordnung (ARIMA (2,0,0)) wäre auch ein Y-t-2-Term auf der rechten Seite und so weiter. Abhängig von den Zeichen und Größen der Koeffizienten könnte ein ARIMA (2,0,0) Modell ein System beschreiben, dessen mittlere Reversion in einer sinusförmig oszillierenden Weise stattfindet, wie die Bewegung einer Masse auf einer Feder, die zufälligen Schocks ausgesetzt ist . ARIMA (0,1,0) zufälliger Spaziergang: Wenn die Serie Y nicht stationär ist, ist das einfachste Modell für sie ein zufälliges Spaziergangmodell, das als Begrenzungsfall eines AR (1) - Modells betrachtet werden kann, in dem das autoregressive Koeffizient ist gleich 1, dh eine Serie mit unendlich langsamer mittlerer Reversion. Die Vorhersagegleichung für dieses Modell kann wie folgt geschrieben werden: wobei der konstante Term die mittlere Periodenänderung (dh die Langzeitdrift) in Y ist. Dieses Modell könnte als ein Nicht-Intercept-Regressionsmodell eingebaut werden, in dem die Die erste Differenz von Y ist die abhängige Variable. Da es (nur) eine nicht-seasonale Differenz und einen konstanten Term enthält, wird es als ein quotARIMA (0,1,0) Modell mit constant. quot eingestuft. Das random-walk-without - drift-Modell wäre ein ARIMA (0,1, 0) Modell ohne Konstante ARIMA (1,1,0) differenzierte Autoregressive Modell erster Ordnung: Wenn die Fehler eines zufälligen Walk-Modells autokorreliert werden, kann das Problem eventuell durch Hinzufügen einer Verzögerung der abhängigen Variablen zu der Vorhersagegleichung behoben werden - - ie Durch den Rücktritt der ersten Differenz von Y auf sich selbst um eine Periode verzögert. Dies würde die folgende Vorhersagegleichung ergeben: die umgewandelt werden kann Dies ist ein autoregressives Modell erster Ordnung mit einer Reihenfolge von Nicht-Seasonal-Differenzen und einem konstanten Term - d. h. Ein ARIMA (1,1,0) Modell. ARIMA (0,1,1) ohne konstante, einfache exponentielle Glättung: Eine weitere Strategie zur Korrektur autokorrelierter Fehler in einem zufälligen Walk-Modell wird durch das einfache exponentielle Glättungsmodell vorgeschlagen. Erinnern Sie sich, dass für einige nichtstationäre Zeitreihen (z. B. diejenigen, die geräuschvolle Schwankungen um ein langsam variierendes Mittel aufweisen), das zufällige Wandermodell nicht so gut wie ein gleitender Durchschnitt von vergangenen Werten ausführt. Mit anderen Worten, anstatt die jüngste Beobachtung als die Prognose der nächsten Beobachtung zu nehmen, ist es besser, einen Durchschnitt der letzten Beobachtungen zu verwenden, um das Rauschen herauszufiltern und das lokale Mittel genauer zu schätzen. Das einfache exponentielle Glättungsmodell verwendet einen exponentiell gewichteten gleitenden Durchschnitt von vergangenen Werten, um diesen Effekt zu erzielen. Die Vorhersagegleichung für das einfache exponentielle Glättungsmodell kann in einer Anzahl von mathematisch äquivalenten Formen geschrieben werden. Eine davon ist die so genannte 8220error Korrektur8221 Form, in der die vorherige Prognose in Richtung des Fehlers eingestellt wird, die es gemacht hat: Weil e t-1 Y t-1 - 374 t-1 per Definition, kann dies wie folgt umgeschrieben werden : Das ist eine ARIMA (0,1,1) - ohne Konstante Prognose Gleichung mit 952 1 1 - 945. Dies bedeutet, dass Sie eine einfache exponentielle Glättung passen können, indem Sie es als ARIMA (0,1,1) Modell ohne Konstant und der geschätzte MA (1) - Koeffizient entspricht 1-minus-alpha in der SES-Formel. Erinnern daran, dass im SES-Modell das Durchschnittsalter der Daten in den 1-Perioden-Prognosen 1 945 beträgt. Dies bedeutet, dass sie dazu neigen, hinter Trends oder Wendepunkten um etwa 1 945 Perioden zurückzukehren. Daraus folgt, dass das Durchschnittsalter der Daten in den 1-Periodenprognosen eines ARIMA (0,1,1) - without-constant-Modells 1 (1 - 952 1) beträgt. So, zum Beispiel, wenn 952 1 0.8, ist das Durchschnittsalter 5. Wenn 952 1 sich nähert, wird das ARIMA (0,1,1) - without-konstantes Modell zu einem sehr langfristigen gleitenden Durchschnitt und als 952 1 Nähert sich 0 wird es zu einem zufälligen Walk-ohne-Drift-Modell. Was ist der beste Weg, um Autokorrelation zu korrigieren: Hinzufügen von AR-Terme oder Hinzufügen von MA-Terme In den vorangegangenen zwei Modellen, die oben diskutiert wurden, wurde das Problem der autokorrelierten Fehler in einem zufälligen Walk-Modell auf zwei verschiedene Arten festgelegt: durch Hinzufügen eines verzögerten Wertes der differenzierten Serie Zur Gleichung oder Hinzufügen eines verzögerten Wertes des Prognosefehlers. Welcher Ansatz ist am besten Eine Faustregel für diese Situation, die später noch ausführlicher erörtert wird, ist, dass eine positive Autokorrelation in der Regel am besten durch Hinzufügen eines AR-Termes zum Modell behandelt wird und eine negative Autokorrelation wird meist am besten durch Hinzufügen eines MA Begriff. In geschäftlichen und ökonomischen Zeitreihen entsteht oftmals eine negative Autokorrelation als Artefakt der Differenzierung. (Im Allgemeinen verringert die Differenzierung die positive Autokorrelation und kann sogar einen Wechsel von positiver zu negativer Autokorrelation verursachen.) So wird das ARIMA (0,1,1) - Modell, in dem die Differenzierung von einem MA-Term begleitet wird, häufiger als ein ARIMA (1,1,0) Modell. ARIMA (0,1,1) mit konstanter, einfacher, exponentieller Glättung mit Wachstum: Durch die Implementierung des SES-Modells als ARIMA-Modell erhalten Sie gewisse Flexibilität. Zunächst darf der geschätzte MA (1) - Koeffizient negativ sein. Dies entspricht einem Glättungsfaktor größer als 1 in einem SES-Modell, was in der Regel nicht durch das SES-Modell-Anpassungsverfahren erlaubt ist. Zweitens haben Sie die Möglichkeit, einen konstanten Begriff im ARIMA-Modell einzubeziehen, wenn Sie es wünschen, um einen durchschnittlichen Trend ungleich Null abzuschätzen. Das ARIMA (0,1,1) - Modell mit Konstante hat die Vorhersagegleichung: Die Prognosen von einem Periodenvorhersage aus diesem Modell sind qualitativ ähnlich denen des SES-Modells, mit der Ausnahme, dass die Trajektorie der Langzeitprognosen typischerweise ein Schräge Linie (deren Steigung gleich mu ist) anstatt einer horizontalen Linie. ARIMA (0,2,1) oder (0,2,2) ohne konstante lineare exponentielle Glättung: Lineare exponentielle Glättungsmodelle sind ARIMA-Modelle, die zwei Nichtseason-Differenzen in Verbindung mit MA-Terme verwenden. Der zweite Unterschied einer Reihe Y ist nicht einfach der Unterschied zwischen Y und selbst, der um zwei Perioden verzögert ist, sondern vielmehr der erste Unterschied der ersten Differenz - i. e. Die Änderung der Änderung von Y in der Periode t. Somit ist die zweite Differenz von Y in der Periode t gleich (Y t - Y t - 1) - (Y t - 1 - Y t - 2) Y t - 2Y t - 1 Y t - 2. Eine zweite Differenz einer diskreten Funktion ist analog zu einer zweiten Ableitung einer stetigen Funktion: sie misst die quotaccelerationquot oder quotcurvaturequot in der Funktion zu einem gegebenen Zeitpunkt. Das ARIMA (0,2,2) - Modell ohne Konstante prognostiziert, dass die zweite Differenz der Serie gleich einer linearen Funktion der letzten beiden Prognosefehler ist: die umgeordnet werden kann: wobei 952 1 und 952 2 die MA (1) und MA (2) Koeffizienten Dies ist ein allgemeines lineares exponentielles Glättungsmodell. Im Wesentlichen das gleiche wie Holt8217s Modell, und Brown8217s Modell ist ein Sonderfall. Es verwendet exponentiell gewichtete Bewegungsdurchschnitte, um sowohl eine lokale Ebene als auch einen lokalen Trend in der Serie abzuschätzen. Die langfristigen Prognosen von diesem Modell konvergieren zu einer geraden Linie, deren Hang hängt von der durchschnittlichen Tendenz, die gegen Ende der Serie beobachtet wird. ARIMA (1,1,2) ohne konstante gedämpfte Trend-lineare exponentielle Glättung. Dieses Modell wird in den beiliegenden Folien auf ARIMA-Modellen dargestellt. Es extrapoliert den lokalen Trend am Ende der Serie, aber erhebt es bei längeren Prognosehorizonten, um eine Note des Konservatismus einzuführen, eine Praxis, die empirische Unterstützung hat. Sehen Sie den Artikel auf quotWhy der Damped Trend Workquot von Gardner und McKenzie und die quotGolden Rulequot Artikel von Armstrong et al. für Details. Es ist grundsätzlich ratsam, an Modellen zu bleiben, bei denen mindestens eines von p und q nicht größer als 1 ist, dh nicht versuchen, ein Modell wie ARIMA (2,1,2) zu passen, da dies wahrscheinlich zu Überfüllung führen wird Und quotcommon-factorquot-Themen, die ausführlicher in den Anmerkungen zur mathematischen Struktur von ARIMA-Modellen diskutiert werden. Spreadsheet-Implementierung: ARIMA-Modelle wie die oben beschriebenen sind einfach in einer Kalkulationstabelle zu implementieren. Die Vorhersagegleichung ist einfach eine lineare Gleichung, die sich auf vergangene Werte der ursprünglichen Zeitreihen und vergangene Werte der Fehler bezieht. So können Sie eine ARIMA-Prognosekalkulationstabelle einrichten, indem Sie die Daten in Spalte A, die Prognoseformel in Spalte B und die Fehler (Daten minus Prognosen) in Spalte C speichern. Die Prognoseformel in einer typischen Zelle in Spalte B wäre einfach Ein linearer Ausdruck, der sich auf Werte in vorangehenden Zeilen der Spalten A und C bezieht, multipliziert mit den entsprechenden AR - oder MA-Koeffizienten, die in Zellen anderswo auf der Kalkulationstabelle gespeichert sind. Analyse von Autoregressiv-Moving Average Models: Schätzung und Vorhersage Die genaue Wahrscheinlichkeitsfunktion aus einer Menge von Beobachtungen, die durch univariate stationäre normale autoregressivemovovative Mittelmodelle erzeugt werden, werden abgeleitet. Es werden praktische Methoden entwickelt, um die genaue Wahrscheinlichkeitsfunktion, insbesondere die inverse und Determinante der T T-Kovarianzmatrix der Beobachtungen T und die quadratische Form Z T -1Z, zu bestimmen, wobei Z ein T 1 - Vektor der Beobachtungen ist. Berechnungen der kleinsten Quadrate und die Maximum-Likelihood-Schätzungen der Parameter werden diskutiert und dargestellt. Mehrere Annäherungen an diese Schätzer werden vorgeschlagen und ihre Machbarkeit und Qualität werden durch eine Simulation untersucht. Sie scheinen vielversprechende Alternativen aus den begrenzten Fällen, die versucht worden sind. Der Mittelwert und die Abweichung der prädiktiven Verteilung irgendeiner zukünftigen Z, die von den beobachteten Z-Amplifikationen abhängig ist, wird zweckmäßigerweise für die exakte Berechnung ausgedrückt. Möchten Sie den Rest dieses Artikels lesen? In dem autoregressiven gleitenden Durchschnitt (ARMA) - Modell berichtete Rose (1993) über ernsthafte Probleme, die durch Rundungsfehler bei der Modellidentifikation und Parameterschätzung verursacht wurden. Jammalamadaka et al. (1999) wies darauf hin, dass die Alix27s-Methode (siehe Ali, 1977) für das ARMA-Modell im Umgang mit gerundeten Daten schlecht konditioniert ist. Kozicki und Hoffman (2004) folgerten, dass die Rundungsfehler die Varianz der Daten verzerren, die Verzögerungsverteilungen der Zeitreihen ändern und zu inkonsistenten Koeffizientenschätzungen führen. Auszugsausschnitt Auszug ABSTRAKT: In diesem Beitrag untersuchen wir die Fisher-Informationsmatrix einer abgerundeten Ratten-Sampling (RSS) Probe und zeigen, dass die Probe immer informativer ist als eine abgerundete einfache Stichprobe (SRS) gleicher Größe. Auf der anderen Seite schlagen wir eine neue Methode vor, um die Maximalwahrscheinlichkeitsschätzungen (MLE) unbekannter Parameter für dieses Modell zu approximieren und die starke Konsistenz und die asymptotische Normalität der vorgeschlagenen Schätzer zu bestimmen. Simulationsexperimente zeigen, dass die angenäherte MLE, die auf abgerundeten RSS basiert, immer effizienter ist als die, die auf gerundeten SRS basiert. SchlagworteRounding errorRanked set samplingMaximum Likelihood Schätzung Volltext Artikel Mai 2012 Weiming Li Tianqing Liu Zhidong Bai quotWenn mit mäßigen Größenproben arbeiten, wird eine signifikante Verringerung der Rechenlast und die Bearbeitungszeit mit geschlossenen Formausdrücken für die Determinante und Inverse erreicht Es erfordert nicht, so viele Cross-Kovarianz-Matrizen zu rechnen, noch invertierende Matrizen der Ordnung in Abhängigkeit von der Stichprobengröße. Im Univariate Fall (k 1) wurden verschiedene Algorithmen mit geschlossener Form von Newbold (1974), Ali (1977, Ljung und Box (1979) und vielen anderen, abgeleitet. Multivariate Erweiterungen dieser Algorithmen wurden hauptsächlich von Hillmer und Tiao ( 1979), Nicholls und Hall (1979), Nicholls (1980), Reinsel (1995), Mauricio (1995) und Ma (1997).Anzeige Abstract Zusammenfassung ausblenden ABSTRAKT: Verfügbare Formularausdrücke für die Determinante und Inverse der Kovarianzmatrix Von einer Reihe von Beobachtungen, die durch ein Vektor autoregressives gleitendes Durchschnittsmodell erzeugt werden, werden nach einem einheitlichen und vereinfachten Ansatz abgeleitet. Es werden auch Berechnungsrichtlinien zur Schätzung dieser Modelle durch Maximum-Likelihood - oder Nichtlinear-Verfahren der kleinsten Quadrate gegeben. Artikel März 2009 Jose L. Gallego-Ziffern Diese Momente hängen davon ab Auf der inversen Matrix von, die schwer zu erreichen sein kann, besonders wenn T groß ist (zB T 50). Es existiert eine Transformation (ähnlich der Choleski-Zerlegung (Ali, 1977)), so daß die Gleichungen (4) und (5) Kann ohne die Notwendigkeit berechnet werden, die Matrix zu invertieren. Definieren Sie einen Dummy-Vektor: "Abstract anzeigen Ausblenden Auszug ABSTRAKT: Die Diskontierung von Cashflows erfordert ein Gleichgewichtsmodell, um die Kapitalkosten zu ermitteln. Die CAPM von Sharpe und das intertemporale Asset-Pricing-Modell von Merton (1973) bieten eine theoretische Begründung für die Diskontierung mit einer konstanten risikoadjustierten Rate. Bei dieser Anwendung entstehen zwei Probleme. Zuerst ist für die Mittelrückführung der Zahlungsströme die Risikoanpassung unbekannt, und zweitens, wenn der Barwert nach vorne verschoben wird, ist die Verteilung des zukünftigen Vermögens wahrscheinlich recht schief. Ich entwickle Gleichgewichts-Diskontsätze für Cash-Flows, deren Quanten - oder Quoten-Zinssatz mittlerweile zurückkehrt. Die serielle Korrelation eliminiert auch das Schiefeproblem weitgehend. Copyright 2007, The Eastern Finance Association. Artikel Mai 2007 Carmelo Giaccotto

No comments:

Post a Comment